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A new class of accelerated Kinetic Monte Carlo algorithms

Vasily V. Bulatov, Tomas Oppelstrup and Manuel Athenes
Introduction and background

Kinetic (aka dynamic) Monte Carlo (KMC) is a powerful method for numerical
simulations of time dependent evolution applied in a wide range of contexts
including biology, chemistry, physics, nuclear sciences, financial engineering, etc.
Generally, in a KMC the time evolution takes place one event at a time, where the
sequence of events and the time intervals between them are selected (or sampled)
using random numbers. While details of the method implementation vary
depending on the model and context, there exist certain common issues that limit
KMC applicability in almost all applications. Among such is the notorious “flicker
problem” where the same states of the systems are repeatedly visited but otherwise
no essential evolution is observed. In its simplest form the flicker problem arises
when two states are connected to each other by transitions whose rates far exceed
the rates of all other transitions out of the same two states. In such cases, the model
will endlessly hop between the two states otherwise producing no meaningful
evolution. In most situation of practical interest, the trapping cluster includes more
than two states making the flicker somewhat more difficult to detect and to deal
with.

Several methods have been proposed to overcome or mitigate the flicker problem,
exactly [1-3] or approximately [4,5]. Of the exact methods, the one proposed by
Novotny [1] is perhaps most relevant to our research. Novotny formulates the
problem of escaping from a trapping cluster as a Markov system with absorbing
states. Given an initial state inside the cluster, it is in principle possible to solve the
Master Equation for the time dependent probabilities to find the walker in a given
state (transient or absorbing) of the cluster at any time in the future. Novotny then
proceeds to demonstrate implementation of his general method to trapping clusters
containing the initial state plus one or two transient states and all of their absorbing
states. Similar methods have been subsequently proposed in [refs] but applied in a
different context. The most serious deficiency of the earlier methods is that size of
the trapping cluster size is fixed and often too small to bring substantial simulation
speedup. Furthermore, the overhead associated with solving for the probability
distribution on the trapping cluster sometimes makes such simulations less efficient
than the standard KMC.

Here we report on a general and exact accelerated kinetic Monte Carlo algorithm
generally applicable to arbitrary Markov models!. Two different implementations
are attempted both based on incremental expansion of trapping sub-set of Markov

1 Practical applicability of the new method is limited to Markov models with low
count (sparsity) of connections (transitions) from individual Markov states.



states: (1) numerical solution of the Master Equation with absorbing states and (2)
incremental graph reduction followed by randomization. Of the two
implementations, the 2nd one performs better allowing, for the first time, to
overcome trapping basins spanning several million Markov states. The new method
is used for simulations of anomalous diffusion on a 2D substrate and of the kinetics
of diffusive 1st order phase transformations in binary alloys. Depending on
temperature and (alloy) super-saturation conditions, speedups of 3 to 7 orders of
magnitude are demonstrated, with no compromise of simulation accuracy.

Problem setting

At present, two distinctly different computational approaches to time-dependent
evolution of Markov models exist: (1) to directly solve of the set of ODE
representing the Master Equation (ME) for time-dependent occupation probabilities
and (2) to use KMC method that samples a single stochastic trajectory from the
unknown solution of the underlying ME. The first method is realistically applicable
only to models with finite (and not too large) number of Markov states whereas the
KMC method is applicable even when the number of accessible Markov states is
infinite. Here we envision an adaptive method that combines the standard KMC
sampling with solving the ME, depending on trapping (or no trapping) situation. We
intend to allow the walker to explore the space by random walks when there is no
serious trapping. On the other hand, when trapping is detected and deemed
sufficiently serious, we intend to build a Master Equation on the trapping cluster of
Markov states and use its solution to help the walker to escape out of the trap.
Viewed from this angle, our method is a hybrid between the standard KMC [6] and
the finite-state projection method developed in [7].
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Figure 1: Two stages of Markov web expansion. On the left: one extra transient state
(black) is already added to the initial state (red). The frontier states are a subset of
unknown states (open) that are connected to the transient states by direct transitions
(dashed lines). On the right: the web has expanded and now reaches from the initial
trapping basin (beige) into the neighboring trapping basin (gray).



To enable adaptivity our hybrid algorithm should be able to tell when building and
solving of the ME is justified and when it is best to leave the walker to simply walk.
Our approach is inspired by the ideas advanced by D. Frenkel, G. Boulogouris and D,
Theodorou [8,9] who proposed to enhance Monte Carlo sampling efficiency by using
a Markovian web, i.e. expanding cluster of “known” states that a walker visits over a
finite number of hops. All the states that are connected to the known states but have
not been visited can be referred to as “unknown” or “frontier” states.

The idea is illustrated in Figure 1 where several stages of web expansion are
schematically shown. One possible algorithm to expand the web is to promote one
(or several) of the frontier states into a known state and inspect and establish all of
its (their) connections to the already existing and new frontier states. We prefer to
delay sampling an actual escape out of a so-constructed web up to the size when
further web expansion is no longer justified by the expected speedup. As we will
show in the subsequent sections, it is possible to maintain, while expanding the web,
arunning average for the expected speedup that can be used to decide which next
frontier state to add and when to stop growing the web and switch to the random
walks. Alternative to this is an algorithm in which random walks are observed for a
while and a running measure of the walk compactness is used to detect trapping and
make a decision to start building the web. In fact, the two strategies can be
combined for a higher efficiency.

Algorithm 1: Numerical solution of ODEs defined on the trapping basin

The first algorithm solves the ME on the sub-set of Markov states in which all of the
known states are treated as transient states whereas all the frontier states are
treated as absorbing states in Novonty’s sense [1]. The underlying ME is

p=pQ

where p is the vector of time-dependent occupation probabilities and Q is the usual
transition rate matrix for the continuous time Markov chain2.

Given a cluster of transient and absorbing states, the solution of this set of ODE
allows one to sample an escape out of the cluster into one of the absorbing states as
follows. First, the partial sum of occupation probabilities taken at time t over all the
transient states defines the total (survival) probability S(t) that the walker has not
escaped the transient sub-set by time t. Given this function, one can obtain a
random sample of the escape time t. from the condition t. = S-(n)) where nis a

2 The usual initial condition is that the system starts in some particular state a at
time t=0, that is p,(0)= 1 and p,(0)=0 for all f=c.. However, other initial conditions
can be useful depending on one’s specific interest.



random number uniformly distributed on [0,1). Then, given the escape time, one can
use another random number to select from among the absorbing states with
weights equal to the ratios of the occupation probabilities of the absorbing states
ps(te) at time te, to 1-n:

One obvious problem with this approach is that, to be able to sample the random
escape time one needs to have the solution for the escape probability S at all times,
from zero to infinity. This is costly and does not bode well for our strategy to build
the web incrementally and adaptively.

The problem is partially solved by observing that, rather than sampling an escape
time from the full solution for S(t) at all stages of web expansion, it is possible to
pre-sample a specific value of S. at which the escape is to take place in advance, i.e.
before actually building the web. This way, in order to sample an escape from the
current web one needs to know the solution for the occupation probabilities p only
for time t. = S1(Se). Because the sequence of web expansion is arbitrary and affects
only the numerical efficiency, the web expansion steps can be tailored to maximally
extend the escape times for a given pre-sampled escape value S. (Se close to 1.0
defines an “early” escape whereas close to 0.0 defines a “late” escape). Furthermore,
by focusing attention on a specific escape value, this trick should allow to
incrementally solve for t. each time the web is expanded.

We have experimented with iterative stiff ODE solvers based on the Krylov subspace
projections, to solve incrementally for t. on the expanding web for the case of
diffusion on a 2D random landscape. Initial numerical experiments showed
considerable promise but we decided, for now, to focus on the alternative
acceleration method developed in the next section.

Algorithm 2: Graph reduction and randomization

The idea of using graph reduction was recently proposed by Tregubenko and Wales
[10]. They showed how, given a graph of connected Markov states (a Markovian
web), it is possible to compute transition probabilities and mean transition times
between any two states (or group of states) on the graph using a sequence of
incremental graph reductions: at each step one intermediate state is eliminated
(deleted) but the transition probabilities between any two remaining states are
updated to account for the paths through the just deleted state. Our second
algorithm uses this graph reduction while incrementally building the Markov web:
once a new transient state is added to the web, it is immediately eliminated and the
transition probabilities are updated for the previously existing states and computed
for any new states. This way, the only states that remain in the reduced graph are
the (renormalized) initial state and all the absorbing states. Eventually all or most
of the remaining states become mutually connected.
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Figure 2: At the top: the 256x256
square lattice of states are connected
by transitions with rates defined by
the saddle-point energies distributed
as shown (the saddle energies are in
arbitrary units). At the bottom: the
evolution of the mean first-passage
time (red) and of the computational
costs for the web algorithm (dashed
green) and the standard random
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the web-based simulation becomes
less efficient than the random walks
at the web size of several thousand
states where the green and the blue
line intersect. The speedup achieved
by the web-based algorithm is the
distance between the blue and the
green lines and reaches some six
orders of magnitude at the web size
of about 104 states at temperature
T=1.0.
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Given that transition probabilities to all absorbing states are available at all stages of
web expansion, one can decide which of the absorbing states to promote to a
transient rank and delete next. This can be done so that to maximize the increment
of the mean escape time (t.) that can be easily computed for each candidate
absorbing state. However, our most important observation is that, once the escape
state is randomly sampled, one can use randomization to sample an escape time t.
from the sub-set of paths conditioned on the selected final escape. The
randomization proceeds by first randomly sampling how many times a given
transient deleted state was visited on the way to the final escape. Then, given the
number of returns for each transient state, another random number is used to
sample the total time the walker resided in the given state. The resulting escape
time is simply the sum of so-sampled residence times over all the deleted states. We
found that such path-reconstruction by randomization can be made efficient if one
stores the fractional probabilities computed during the forward process of web
reduction. The numerical cost of incremental web-expansion and reduction is



defined by the number of deleted states and the number of absorbing states
remaining in the web. The path-reconstruction by randomization is still costlier but
no worse than O(N3) in the number of states in the web.

[t turns out that the web-reduction algorithm proposed by Wales and Tregubenko is
precisely equivalent to Gaussian elimination. This can be effectively utilized by re-
using the LU factorization to compute not only the mean escape time, but also a
number of the moments of the escape time distribution S(t). This information
should be sufficient to approximate the unknown full solution for S(t) from which to
randomly sample the escape time te.

This algorithm was used to simulate two test problems. The first one was random
walks on a random 2D substrate. The size of the square lattice was 256x256.
Although assigned randomly, the transition rates were such that the spectrum of the
transition rate matrix Q was wide and “bad” in the sense that it contained no gaps.
This was done specifically to make the system stiff and difficult to solve using
approximate methods based on adiabatic elimination [refs]. The tests shown in
Figure 2 demonstrate that the resulting speedup increases with the increasing width
of transition rate distribution and depends also on the size of the Markov web
relative to the size of the trapping basin. The graphs also show that, depending on
the properties of the trapping basin being explored, one can decide when to switch
from web expansion to simple random walk and back so that the method is never
less efficient than the standard KMC.
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particles, from a classical Oswald ripening to cluster coalescence [12] resulting in a
gross modification of the phase separation kinetics. At the same time, the very same
trapping renders KMC simulations inefficient, requiring months of continuous
number crunching and still only reaching early stages of coarsening [11]. As shown
in Figure 3, application of the web-expansion in combination with the web-
reduction algorithm described above speeds up KMC simulations considerably,
especially in cases where trapping is strong.

Summary

We proposed a new class of Monte Carlo algorithms in which random walks in the
space of Markov states are performed whenever the walks are expansive (non-
returning) but, whenever trapping is detected (the walk becomes compact), a
solution of the Master Equation on the trapping basin is used to help overcome the
trapping. The new method is in principle exact and contains internal criteria for
deciding whether any trapping is taking place and whether the trapping is serious
enough to deserve building the Master Equation for accelerated escape out of the
trapping basin. Thus the new method will never underperform the standard KMC
algorithms since it switches back to the random walks when no acceleration is
needed. At the same time, being exact, the method does not depend on the spectral
properties of the resulting transition sub-matrix defined on the trapping basin.
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